Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37685254

RESUMO

Hippophae rhamnoides L. has been widely used in research and application for almost two decades. While significant progress was achieved in the examination of its fruits and seeds, the exploration and utilization of its by-products have received relatively less attention. This study aims to address this research gap by investigating the effects and underlying mechanisms of sea buckthorn seed residues both in vitro and in vivo. The primary objective of this study is to assess the potential of the hydroalcoholic extract from sea buckthorn seed residues (HYD-SBSR) to prevent cell apoptosis and mitigate oxidative stress damage. To achieve this, an H2O2-induced B16F10 cell model and a D-galactose-induced mouse model were used. The H2O2-induced oxidative stress model using B16F10 cells was utilized to evaluate the cellular protective and reparative effects of HYD-SBSR. The results demonstrated the cytoprotective effects of HYD-SBSR, as evidenced by reduced apoptosis rates and enhanced resistance to oxidative stress alongside moderate cell repair properties. Furthermore, this study investigated the impact of HYD-SBSR on antioxidant enzymes and peroxides in mice to elucidate its reparative potential in vivo. The findings revealed that HYD-SBSR exhibited remarkable antioxidant performance, particularly at low concentrations, significantly enhancing antioxidant capacity under oxidative stress conditions. To delve into the mechanisms underlying HYD-SBSR, a comprehensive proteomics analysis was conducted to identify differentially expressed proteins (DEPs). Additionally, a Gene Ontology (GO) analysis and an Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis were performed to elucidate the functional roles of these DEPs. The outcomes highlighted crucial mechanistic pathways associated with HYD-SBSR, including the PPAR signaling pathway, fat digestion and absorption, glycerophospholipid metabolism, and cholesterol metabolism. The research findings indicated that HYD-SBSR, as a health food supplement, exhibits favorable effects by promoting healthy lipid metabolism, contributing to the sustainable and environmentally friendly production of sea buckthorn and paving the way for future investigations and applications in the field of nutraceutical and pharmaceutical research.

2.
Immun Inflamm Dis ; 11(8): e942, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647455

RESUMO

BACKGROUND: Sepsis is a significant contributor to organ function damage or failure that results in intestinal dysfunction. Emodin (Emo) has received much attention for its notable anti-inflammatory and antibacterial properties. We aimed to explore the function of Emo on sepsis. METHODS: Sprague Dawley (SD) rats were pretreated with 20 or 40 mg/kg of Emo, followed by using cecal ligation and perforation to establish sepsis models. Hereafter, blood glucose levels, biochemical parameters, and inflammatory cytokines were measured. Additionally, ileal myeloperoxidase (MPO) activity was also measured. Diamine oxidase (DAO) level in plasma, fluorescein isothiocyanate-dextran 40 (FD-40) level in serum, bacteria number in blood and peritoneal fluid, histopathological changes of ileum, and tight junction (TJ) protein expressions in ileum were tested to evaluate the barrier function. Furthermore, CD4+ and CD8+ T cells' percentages were evaluated by flow cytometry. Finally, rats' survival rate was calculated as live rats divided by the total number of rats. RESULTS: Emo pretreatment not only decreased blood glucose level, but also downregulated triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (SCr), blood urea nitrogen (BUN) contents for sepsis rats, especially for the high dose of Emo (p < .05). Furthermore, Emo inhibited MPO activity and inflammatory factor release (p < .05). Crucially, after Emo administration, the barrier function of ileum was enhanced, evidenced by the reduced DAO, FD-40 levels, decreased bacteria number, alleviated pathological damage in ileum and increased TJ protein expressions (p < .05). Rats treated with Emo exhibited increased percentages of CD8+ and CD4+ T cells (p < .05), as well as an improved survival rate. CONCLUSION: Emo exhibited a remarkable ability to attenuate sepsis by restoring intestinal dysfunction and improving survival rates, and the mechanism was closely related to anti-inflammatory properties, which provided new solid evidence for the use of Emo in treating sepsis.


Assuntos
Emodina , Peritonite , Sepse , Ratos , Animais , Glicemia , Ratos Sprague-Dawley , Sepse/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Molecules ; 27(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432162

RESUMO

There is an on-going demand in recent years for safer and "greener" hair coloring agents with the global consumer awareness of the adverse effects of synthetic hair dyes. The belief in sustainability and health benefits has focused the attention of the scientific community towards natural colorants that serve to replace their synthetic toxic counterparts. This review article encompasses the historical applications of a vast array of natural plant hair dyes and summarizes the possible coloration mechanisms (direct dyeing and mordant dyeing). Current information on phytochemicals (quinones, tannins, flavonoids, indigo, curcuminoids and carotenoids) used for hair dyeing are summarized, including their botanical sources, color chemistry and biological/toxicological activities. A particular focus is given on research into new natural hair dye sources along with eco-friendly, robust and cost-effective technologies for their processing and applications, such as the synthetic biology approach for colorant production, encapsulation techniques for stabilization and the development of inorganic nanocarriers. In addition, innovative in vitro approaches for the toxicological assessments of natural hair dye cosmetics are highlighted.


Assuntos
Cosméticos , Tinturas para Cabelo , Plantas , Carotenoides , Taninos
4.
Artigo em Inglês | MEDLINE | ID: mdl-36072408

RESUMO

Background: The incidence of acute lung injury/acute respiratory distress (ALI/ARDS) is high in sepsis aggravating morbidity and mortality. Glycyrrhizic acid (GA) has pharmacological activities in the treatment of inflammation and antiviral. Materials and Methods: Sepsis rats were constructed by the cecal ligation and puncture (CLP) surgery. After GA (25 and 50 mg/kg) injection, the survival rate, blood oxygen, biochemical indexes, myeloperoxidase (MPO) activity, and wet/dry weight ratio of the lung were observed. The bronchoalveolar lavage fluid was collected to count the cells and measure the level of TNF-α, IL-1ß, IL-10, and high mobility group box-1 protein (HMGB1). Lung tissue sections were taken to observe the levels of histopathological injury and apoptosis by HE and TUNEL staining. The levels of HMGB1, TLR4, p-38 MAPK, NF-κB, and ERK1/2 proteins were observed by immunohistochemistry and Western blot. Results: GA treatment improved the survival rate, blood oxygen, ALT, AST, BUN, and Scr of CLP rats. It could advance the MPO activity, the wet/dry weight ratio, histopathological injury, apoptosis, and the IL-10 level in the lung. After GA injection, the number of total cells, neutrophils, and macrophages in the CLP rats was reduced and the levels of TNF-α, IL-1ß, HMGB1, TLR4, p-38 MAPK, and ERK1/2 in the CLP rat were also repressed. Conclusions: GA treatment may improve the sepsis-induced ALI/ARDS and inflammation by inhibiting HMBG1. This study provided an experimental basis for the prevention and treatment of ALI/ARDS caused by sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...